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Abstract 
 
Memory Encryption (ME) has yet to be used at the core of operating system designs to 
provide confidentiality of code and data.  As a result, numerous vulnerabilities exist at 
every level of the software stack.  Three general approaches have evolved to rectify this 
problem.  The most popular approach is based on complex hardware enhancements; this 
allows all encryption and decryption to be conducted within a well-defined trusted 
boundary.  Unfortunately, these designs have not been integrated within commodity 
processors and have primarily been explored through simulation with very few 
prototypes.  An alternative approach has been to augment existing hardware with 
operating system enhancements for manipulating keys, providing improved trust.  This 
approach has provided insights into the use of encryption but has involved unacceptable 
overheads and has not been adopted in commercial operating systems.  Finally, 
specialized industrial devices have evolved, potentially adding coprocessors, to increase 
security of particular operations in specific operating environments.  However, this 
approach lacks generality and has introduced unexpected vulnerabilities of its own.  
Recently, memory encryption primitives have been integrated within commodity 
processors such as the Intel i7, AMD bulldozer, and multiple ARM variants.  This opens 
the door for new operating system designs that provide confidentiality across the entire 
software stack outside the CPU.  To date, little practical experimentation has been 
conducted and the improvements in security and associated performance degradation has 
yet to be quantified.  This article surveys the current memory encryption literature from 
the viewpoint of these central issues. 
 
Categories and Subject Descriptors:  B.3.m [Hardware]: Memory Structures-
Miscellaneous; C.1.0 [Processor Architectures]: General; C.4 [Computer Systems 
Organization]: Performance of Systems-Reliability, availability, and serviceability; D.4.2 
[Operating Systems]: Storage Management-Main memory  
 
General Terms: Design, Experimentation, Performance, Security 
 
Additional Key Words and Phrases: Secure processors, memory encryption, 
confidentiality, protection, hardware attacks, software attacks 
 
Background and Motivation 
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Encryption has been an important part of secure computing for decades, first in the DoD 
and national agencies and then publicly beginning with DES and public-key encryption in 
1977 [Mel et al. 2001].  As public use of computers continued to grow, so did the need to 
secure sensitive information.  In 1991, Phil Zimmerman released the first version of 
Pretty Good Privacy (PGP) allowing anyone to encrypt e-mail and files.  In 1995, 
Netscape developed the secure sockets layer (SSL) protocol combining public and 
private-key encryption to protect online financial transactions.   
 
Full disk encryption (FDE) in commodity computer systems is a more recent innovation 
that provides confidentiality of all data stored on disk.  Recent advances to the overall 
speed of processors, thanks to the march of Moore’s law, and hardware-based encryption 
have resulted in several commercially viable FDE implementations. Software approaches 
to FDE include TrueCrypt, PGPDisk, FileVault, and Bitlocker. In addition, multiple hard 
drive manufacturers offer self-encrypting drives (SED) in which encryption is handled 
entirely by the hard drive microcontroller. Several factors have resulted in increasing 
adoption of FDE technologies [Brink 2009]. Regulations, such as Sarbanes-Oxley and the 
Health Insurance Portability and Accountability Act (HIPAA), have increased the 
requirement for privacy. The advent of mobile computing and widespread movement of 
information over the Internet have raised concerns regarding physical access to data. 
Finally, numerous data breaches have been publicized raising awareness of 
vulnerabilities.   
 
Unfortunately, even with FDE, systems exhibit a major weakness in that data and code 
stored in memory are unencrypted (i.e. stored in the clear) as shown in Figure 1.  This 
weakness has been exploited to gather encryption keys, passwords, passphrases, and 
other personal information from memory, thereby diminishing, or in some cases 
nullifying, the value of FDE [Halderman et al. 2008].  Since code is also stored in 
memory, it is possible to inject a wide variety of malicious implants into both user 
process and operating system kernels. Even applications designed specifically with 
security in mind have been shown to be vulnerable. For example, cryptographic libraries 
have been designed to prevent access to keys by zeroizing (or overwriting with zeros) a 
key after it has been used. This zeroizing of code is sometimes removed by compiler 
optimization because it appears superfluous, re-introducing the vulnerability [Chow et al. 
2004]. 
 
To exploit memory vulnerabilities, numerous attack vectors have been developed.  In a 
cold boot attack, for example, memory is frozen using a refrigerant and then removed 
from the computer. It is then quickly placed into a specially designed system that reads 
out its content, targeting encryption keys and other sensitive information.  While this 
approach is novel, the idea of recovering encryption keys from memory has been 
described as early as 1998 [Kaplan 2007]. Even without cooling, some information 
persists in RAM for several minutes [Halderman et al. 2008]. However, cooling slows 
down the rate of data loss, reducing recovery errors [Chhabra 2011b]. Some approaches, 
such as the DMA-firewire attack, deliberately bypass full disk encryption to enable 
forensic analysis. Unfortunately, these techniques are equally accessible to criminal 
organizations and other attackers as well as legitimate law enforcement.  Similar results 
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are available via simple software attacks involving buffer overflows [Rabaiotti et al. 
2010].  One particularly effective attack, bus-snooping and injecting, allows information 
to be captured or inserted via the bus lines between system components [Boileau 2006].  
This exploitation method has been used to undermine the Xbox gaming system. This 
system was specifically designed to provide a secure chain of trust for enforcing digital 
rights management (DRM).  Bus-snooping was used to capture keys as they transited 
between read-only-memory and the CPU.  These keys were then used to decrypt the 
secure boot loader undermining the entire chain of trust.  Subsequently, low-cost “mod” 
chips were developed that can be soldered into the gaming system bus, allowing a user to 
bypass DRM restrictions and play pirated games [Steil 2005].  Alternatively, the same 
chips can be used to run various operating systems on the gaming system allowing it to 
be used for illicit purposes [Rabaiotti et al. 2010].   
 

 
Figure 1:  System with Full Disk Encryption but Vulnerable Code and Data. 

Fortunately, access to information in conventional dynamic RAM presents an adversary 
with only a fleeting opportunity to obtain sensitive information between power cycles.  
However, dynamic RAM is being augmented or replaced with new non-volatile 
alternatives -- flash memory, magnetic RAM, and ferro-electric RAM -- which provide 
several benefits including energy efficiency and tolerance of power failure.  Flash 
memory has been used to augment traditional RAM in the Vista and Windows 7 “ready 
boost” feature, whereas the other two technologies are potential RAM replacements.  
Unfortunately, these non-volatile memories allow information and attacks to persist 
indefinitely [Enck et al. 2008]. Interestingly, Microsoft has anticipated the security issues 
associated with persistent memory and designed the ready boost feature to encrypt all 
contents of flash making it difficult for forensics investigators to recover useful data 
[Hayes et al. 2009].  If these memories are adopted in future architectures, without 
adequate attention to encryption, there is the potential that memory based attacks will 
become more prevalent.   
 
In effect, FDE has pushed the vulnerabilities associated with persistent data stored on 
disk down into the next level of the memory hierarchy, which has proven equally 
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vulnerable.  The key concept by which vulnerabilities were mitigated on disk was 
encryption: encrypting the disk provided confidentiality preventing access to sensitive 
information. By migrating the same solution down into RAM, it will be possible to 
circumvent similar attacks at this lower level of the memory hierarchy.  
 
The typical threat model assumed in the memory encryption literature involves hardware 
and/or software attack.  Attackers are often assumed to have physical access to the 
vulnerable system where sensitive information can be captured in various ways. The 
primary goal of attackers is to steal secret information or code.  Memory modification is 
sometimes discussed but usually as a means to force a system to leak confidential 
information. Examples of these attackers range from those motivated by financial gain 
such as bank employees capturing ATM pin numbers, criminals copying and distributing 
software (digital rights management), to those motivated by more nefarious goals such as 
reverse engineering or stealing intelligence from autonomous military vehicles. 
 
Software attacks involve corrupt processes or the operating system itself.  Since the OS 
typically controls memory arbitration, it must either be trusted and considered part of the 
trusted computing base (TCB) or dealt with in another way.  This is handled in different 
ways in the literature with many adding a secure, trusted kernel to the list of assumptions 
of the work. Other approaches include only hardware in the TCB, treating the OS as any 
other untrusted process.  A hybrid approach includes some portion of a trusted kernel or a 
trusted hypervisor along with hardware support.   
 
One of the main assumptions in the ME literature is that the processor provides a natural 
boundary within which sensitive information can reside—it is a fundamental component 
of the TCB in most approaches.  All components outside of the processor are assumed to 
be vulnerable to include RAM and its interconnections (data and address bus), other I/O 
devices, etc.  Most schemes attempt to protect RAM and the data bus, and several also 
target the address bus [Duc and Keryell 2006], [Dallas 1997] while other external 
components are not normally considered.  A subset of the memory encryption literature 
additionally adds the cache-to-cache connections as a consideration when protecting 
multiprocessor systems.  
 
While the security of systems employing memory encryption is enhanced, attacks on the 
devices are still possible, by etching away the chip walls with acid to reveal internal bus 
lines for microprobing, or electromagnetic and power analyses among other side channels 
[Ravi et al. 2004]; [Kocher et al. 1999]. For systems relying on software based 
encryption, key expansion tables (e.g. AES) are subject to cache attacks; a malicious 
process tracks and times cache accesses [Osvik et al. 2005], [Mowery et al. 2012].  The 
typical target of all of these attacks is the encryption key hidden within the chip 
boundary. Most of these approaches increase the attacker workload by an order of 
magnitude, require expert knowledge, and cannot be exploited remotely over a network 
[Suh et al. 2007]. Moreover, while tamper resistant mechanisms are already available that 
significantly increase the barrier to entry [Chari et al. 1999], protecting circuits from 
invasive and side-channel attacks is an open research area that is not addressed in the 
main body of memory encryption literature. Protections such as FDE are equally 
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available to criminals and well-intentioned users [Casey et al. 2011].  Disk encryption has 
been used to protect information on criminal activity and prevent successful prosecution.  
Some of the techniques identified to aid law enforcement (e.g. DMA-firewire attack) in 
the capture of key material on suspect machines would be thwarted by memory 
encryption—memory encryption could be used to further protect criminal activity.  This 
paper explores efforts to realize protection of confidentiality through memory encryption 
in the context of next generation operating systems. 
 
Full Memory Encryption in Operating Systems Design 
 
In general, encryption is used to provide four basic properties of protection: 
confidentiality, integrity, authentication, and non-repudiation.  In trusted computing and 
operating system security these properties are realized through authenticated booting, 
ensuring that program code is not changed before it is loaded into memory, memory 
authentication, ensuring that program code is not changed during use, and attestation, 
ensuring that hardware and software have not been altered. Trusted software components, 
which make up part of the trusted computing base (TCB), are booted and verified 
producing a chain of trust, without which the security mechanisms could be 
compromised before the system is initialized. While a few of the works discuss the 
implementation of these other mechanisms, most assume that these components are 
functional and focus on the overhead of ME in the steady-state.  Other important 
assumptions often include mechanisms for secure code delivery, key creation and escrow, 
inter-process communication, and I/O protection among others.  Memory authentication 
is often closely associated with memory encryption solutions; however, a thorough 
survey of memory authentication mechanisms is available [Elbaz et al. 2009].  
 
Memory encryption is solely concerned with the confidentiality of data and code during 
execution, with the express purpose of increasing attacker workload associated with 
crafting exploits and stealing sensitive information.  It is interesting to note, however, that 
memory encryption would also hamper attempts to inject code, generally assumed to 
require memory authentication.  An adversary lacking an encryption key would be unable 
to successfully change an encrypted binary, as decryption would result in corrupt code 
and likely program termination [Barrantes et al. 2003].  Early work associated with full 
memory encryption (FME) was dominated by the desire to provide digital rights 
management and in particular to prevent the theft of intellectual property associated with 
program source code.  This is still the primary purpose in some systems (e.g. gaming 
systems), but more recently these techniques have become recognized as a method for 
removing vulnerabilities and protecting system users. 
 
There are two general approaches to providing confidentiality with encryption that are 
commonly used in computer architectures based on symmetric or public key encryption 
techniques. Symmetric key encryption, based on a shared secret (key), is generally held 
to be more efficient (i.e. on the order of 1,000 times faster) but does not provide non-
repudiation and requires a non-trivial trusted key distribution scheme [Kaplan 2007].  
Three common algorithms are typically used to realize this approach based on DES, 
Triple-DES, and AES.  Public-key encryption involves the use of two interlocking keys, 
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one held privately and the other published, from which all four properties of protection, 
including non-repudiation, can be realized.  This scheme has the advantage that public 
keys can be distributed across open networks.  A broad variety of books are available that 
describe these core ideas, [Mel et al. 2001] is particularly accessible. In light of the speed 
and complexity involved in public key encryption, it is unsurprising that the memory 
encryption literature typically uses symmetric key cryptography.  However, delivery of 
encrypted code over the network may be facilitated using the public key model [Kgil et 
al. 2005].  
 
Unfortunately, computer users have consistently demonstrated an aversion to any form of 
increased response time, even when associated with increased security.  Studies suggest 
that delays of longer than 150 ms are perceptible to users [Muller et al. 2011].  Full disk 
encryption has only become viable because overheads have been reduced to acceptable 
levels.  Achieving similar levels of acceptable performance for memory encryption offers 
a far more significant challenge: there is an existing, growing, and well-documented 
speed-gap between processors and memory – improvements in processor speed are 
outpacing improvements in memory speed by an average of 18% per year [Hennessy et 
al. 2006].  Adding encryption latency to this already strained interface may require an 
overhaul of the basic fetch-decode-execute cycle employed by processors. 
 
Added to the complexities of any memory encryption solution is the fact that, unlike the 
hard disk where data is sequentially stored for access, memory is used in a broad variety 
of dynamic access patterns.  Numerous decisions must be made concerning the 
granularity of encryption in operating systems. For example, a running program will 
utilize RAM during execution for both stacks and heap space.  The stack is accessed so 
frequently that adding encryption/decryption overhead to stack operations might prove 
prohibitive. Unfortunately, during context switches, registers containing sensitive 
information are normally saved to the stack in external memory. Additionally, the heap 
size, for any given program, is not normally known a-priori. The complexities of memory 
mapped input-output peripherals result in an inability to cache mapped regions.  This 
naturally presents a challenge, if the overarching concept involves decrypting memory 
only after it is brought onto to the processor chip. It is not clear if the entire memory 
should be encrypted with a single key, or if shared libraries, individual programs, and/or 
data should be encrypted independently using separate keys.  Alternatively should 
individual functions or cache blocks be used as the unit of encryption?  All of these 
decisions incur a tradeoff between the number of keys that must be securely stored, 
verses the degree of protection and overlapping in operations that can be realized. 
 
The literature on memory encryption is largely concerned with three core approaches 
based on hardware enhancements, operating system enhancements, and specialized 
industrial applications. These approaches are explored in the sections that follow. 
Unfortunately, almost all of the hardware and operating system enhancements have only 
been implemented through simulation or emulation, and as a result, the claims have yet to 
be validated and quantified on practical systems. 
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Monolithic Processor Enhancements 
 
The general scope of hardware enhancements includes a number of approaches that have 
added specialized encryption units and/or key storage mechanisms to existing processor 
designs. In addition, several efforts have proposed inserting hardware into the system bus 
to leverage legacy code and hardware. Although the first patents detailing memory 
encryption were executed in 1979 [Best 1979; Best 1981; Best 1984], and the first paper 
detailing their use was published in 1980 [Best 1980], the body of in-depth academic 
research related to general-purpose memory encryption has occurred primarily in the past 
decade.   
 
One of the earliest papers, often referenced by others of this genre, highlights an execute-
only memory (XOM) architecture [Lie et al. 2000]. This architecture was designed to 
combat software piracy and combines aspects of both public and symmetric key 
encryption. Public key encryption is used to deliver binary code to the XOM chip, which 
maintains a unique private key. This allows vendors to encrypt the code for a particular 
system and ensures that it cannot be reused on another system. The header associated 
with the code includes a symmetric key embedded within it, used to segment memory 
into unique compartments at the granularity of a process. In order to map compartments 
to encryption keys, each compartment is tagged. A single null compartment is created to 
hold all unencrypted processes and libraries. This compartment enables communication 
between encrypted processes while allowing all processes to use shared libraries.   
 
The XOM architecture assumes several hardware enhancements to existing processors. 
Special microcode is required to store the unique private key in a private on-chip 
memory. A symmetric-key encryption unit is added to the processor, together with a 
special privileged mode of operation for encryption. A hardware trap on instruction cache 
misses provides a segue into this encryption mode for encrypted code. When a cache 
miss occurs, the instruction is decrypted before being loaded into the processors 
instruction register. Although the authors state encryption could be accomplished in 
software they acknowledge that this would be very expensive in terms of overhead.  
Since many of the papers that follow XOM include similar hardware, only the differences 
or unique contributions of the other systems will be discussed.  
 
XOM encrypts memory in a straightforward manner commonly known by the encryption 
community as electronic codebook mode but referred to in the literature as direct 
encryption.  Each code block is decrypted after it is read from memory, by the encryption 
unit, and encrypted before it is written back to memory. Kgil et al. [2005] propose an 
additional chip enhancement targeted at improving the security of direct encryption, 
called ChipLock.  This involves storing a small trusted part of an operating system 
kernel, called TrustCode, in a read-only memory (ROM), termed TrustROM. Additional 
instructions are added to enable secure communication between the trusted and untrusted 
parts of the operating system.  The TrustCode intercepts all system calls for memory 
access and performs encryption without the knowledge of the untrusted portion of the 
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operating system.  Symmetric keys are assigned at the granularity of the process as in 
XOM, with additional keys for shared libraries and the concept of a null bit for 
applications that are not encrypted.  
 
Rogers et al. [2005] attempt to improve on direct encryption using an alternative 
mechanism, prefetching, which had already been improving the CPU-memory 
performance gap for decades. Prefetching uses stream buffers to capture spatial locality 
in programs by copying additional contiguous blocks of memory into local cache after 
each miss.  These buffers are especially good at speeding up programs that exhibit spatial 
locality and contiguous access, such as scientific applications [Hennessy et al. 2006].  An 
alternative prefetching technique is also used that involves correlation tables to capture 
and reuse temporal locality, i.e. complex and/or non-contiguous sequences of memory 
access. 
 
In another direct encryption scheme, Hong et al. [2011] perform a tradeoff analysis on the 
use of sensitive (encrypted) versus frequently accessed (unencrypted) data in embedded 
scratch pad memories (SPM).  Scratch pad memories are software controlled SRAMs, as 
opposed to caches, which are typically controlled by hardware.  There are numerous 
papers discussing both static and dynamic policies for SPM utilization to reduce power 
consumption and memory access latency. DynaPoMP was the first to consider 
partitioning the SPM into distinct areas with an area dedicated to sensitive code and data. 
The authors vary the size of the two partitions in an attempt to find the most efficient 
ratio.  There is a common assumption that an encryption unit and special instructions are 
available in hardware.  
 
Unfortunately, direct encryption schemes involve a one-to-one mapping between blocks 
of unencrypted and encrypted code. As a result, encrypted code portrays a similar 
statistical distribution as the unencrypted code, allowing a significant amount of 
information to be gleaned from frequency analysis [Chhabra 2010].  Based on the typical 
AES encryption block size of 128 bits, programs tend to exhibit multiple redundancies 
that would lead to information leakage as shown in Figure 2.  
 
After XOM, a number of papers attempt to mitigate this statistical weakness using a one-
time pad (OTP) [Suh et al. 2003; Shi et al. 2004; Yang et al. 2005; Yan et al. 2006; Suh et 
al. 2007; Duc et al. 2006].  A traditional one-time pad is simply a source of random data 
that is used exactly once to encrypt a particular communication. This is a form of 
symmetric-key cryptography since both the sender and receiver require the pad.  
Although variously referred to as “pseudo one time pads” (POTP) in the literature, this is 
more commonly known in the encryption community as counter-mode (CTR) encryption. 
In computing, OTP’s are created by encrypting a unique seed, typically producing a pad 
of 128 bits in length (i.e. the size of an AES encryption block) as shown in Figure 3.  A 
fixed initialization vector (Nonce) is concatenated with a counter producing a unique 
seed.  The seed is encrypted with a unique key generating the pad, which is then 
exclusively or’ed (XOR) with the plaintext to produce the cipher text. In memory 
encryption schemes, the counter is stored either internally, in a cached table that maps to 
a memory address, or unencrypted within the encrypted memory itself (i.e. RAM) since 
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counter secrecy is not required [Yan et al. 2006]. When a memory reference occurs, the 
pad is regenerated, using the counter (and optionally some other component such as the 
virtual address) and initialization vector, then exclusively or’ed with the encrypted data to 
produce the original plaintext. Since the encryption operation is no longer dependent 
upon the data in memory, this regeneration can be overlapped with the memory read, 
decreasing the performance impact of decryption.  
 

 
Figure 2:  Redundancies in 128 Bit Sections of a Small Selection of Program Binary Code  

 
 

 
 

 
 
 

 
 
 
 
 

Figure 3:  Pseudo-One Time Pad or Counter Mode Encryption 

 
While Aegis is a OTP approach, it was originally proposed as a direct encryption scheme 
in 2003.  Suh et al. propose the one-time pad approach in [2003b], perhaps illustrating the 
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shift away from direct encryption in the community.  One interesting contribution from 
this paper is the method of creating the unique key.  The chip-specific encryption key is 
created by physically unclonable functions (PUF) [Suh et al. 2003a].  These functions 
make use of unique timing characteristics of “identical” models of the hardware to create 
the unique keys.  Aegis is one of several approaches to include the idea of a small, 
protected security kernel that is separate from the rest of the untrusted operating system.  
Unfortunately, this kernel measures 74K lines of code for virtual memory management 
alone [Chhabra et al. 2011].  
 
In [Yang et al. 2005], the authors look to reduce the execution overhead of using one-
time pads by adding a sequence number cache (SNC) onto the chip below the L2 cache.  
Sequence numbers, in this paper, correspond to the counters used in Figure 3.  However, 
the initialization vector is unique per cache block and corresponds to the virtual address.  
Since the addresses are unique across memory, the pads (and thus the ciphertext) will be 
spatially unique.  The counters are updated upon each write to memory ensuring 
temporal uniqueness (i.e. pads used for a single location will not be the same over time). 
The authors suggest that a reasonable addition to a chip would be a SNC of 64 KB.  
Based on this limitation, two policies for using the SNC are described.  In the first, only 
the portion of memory corresponding to the number of available sequence numbers 
stored in the SNC can be encrypted. The amount of protected memory is therefore limited 
by the SNC size. In the second method, additional memory lines are encrypted and 
sequence numbers that do not fit in the cache are stored in plaintext in memory.  Level 
two cache is increased in both methods by four percent in order to store the virtual 
memory addresses used to index into the SNC since only physical addresses are typically 
available above the level one cache.   
 
In [2006], Yan et al. present split counter mode encryption, in which they introduce 
major and minor page counters.  In this scheme, a 4 KB page has one 64 bit major 
counter and 64 7-bit minor counters (one per 64 Byte cache line).  Concatenating the 
page major counter with the cache line minor counter forms the overall counter.  This 
counter is further concatenated with the memory block’s virtual address, and an 
initialization vector to form the unique seed.  The vector can be unique per process, group 
of processes or system based on security requirements.   
 
In CryptoPage [Duc et al. 2006], the authors again attempt to enhance the OTP 
encryption scheme.  In this case, they modify the translation look-aside buffer (TLB) and 
page table structures, adding information for pad computation. Since the TLB and/or 
page table structures are always accessed before a memory read, the authors claim that 
the pad generation latency can be almost completely removed.  This scheme is 
implemented on top of the HIDE memory obfuscation technique whereby access patterns 
are permuted in memory at designated times [Zhuang et al. 2004].   
 
In address independent seed encryption (AISE) [Rogers et al. 2007], the authors propose 
to use a logical identifier, rather than the virtual or physical block address, as the major 
counter portion of the seed. This scheme closely resembles split mode counters [Yan et 
al. 2006].  It is claimed that using an address independent seed enables common memory 
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management techniques, such as virtual addressing, paging, and inter-process sharing.  In 
[2011], Chhabra et al. propose to build a secure hypervisor upon the AISE substrate.  The 
hypervisor implements memory cloaking, whereby the operating system only has access 
to the encrypted pages of applications.  The authors suggest that this cloaking will protect 
processes from vulnerabilities in the insecure underlying operating system, with an order 
of magnitude fewer lines of code than in Aegis.   
 
In [2007], Nagarajan et al. propose compiler-assisted memory encryption for embedded 
processors assuming some limited hardware support. They claim that the current counter 
mode solutions require too much silicon space for small and medium size embedded 
processors.  The compiler supports memory encryption by introducing special 
instructions to calculate OTP’s prior to loads and stores, and assumes the existence of 
additional process-unique registers used to store the counters.  Space for the unique key 
and global counter is also provided inside the CPU and the availability of a crypto unit is 
assumed.  The compiler attempts to ensure that the counter used for a store is still 
available for successive loads from the same memory location. A global counter must be 
available for those loads and stores that do not match one of the process-unique counter 
registers.  The authors claim that since frequently executed loads and stores exhibit 
highly accurate counter matching, 8 special hardware registers with 32 counters are 
sufficient for reasonable performance.  
 
Multiprocessor Enhancements 
 
Chhabra et al. [2010] compare a symmetric multiprocessor (SMP) and a distributed 
shared memory (DSM) design; they also provide a quick look at monolithic memory 
encryption. Whereas the efficiency of memory-to-cache confidentiality is the primary 
concern for monolithic processors, multiprocessor systems must also protect cache-to-
cache traffic.  In symmetric multiprocessors, the shared bus between caches and memory 
can be used as a way to coordinate messages between processors. This sharing is not 
available in distributed shared memory systems, which must use message passing.  
Additionally, DSM systems can be observed more easily than monolithic chips via 
interconnect wires that are exposed at the back of server racks [Rogers et al. 2008].   
 
In [2004], Shi et al. use OTP encryption both for memory-to-cache and cache-to-cache 
transfers as shown in Figure 4.  In this approach sequence numbers (counters) are 
incremented in lockstep in each separate processor resulting in a claim of “very low” 
overhead for cache-to-cache encryption.  A hardware mechanism in the processors 
ensures that the sequence numbers begin differently after each reboot.  Besides the 
typical crypto-engines placed within each processor core, a separate crypto-unit is 
embedded in the north bridge memory controller for memory-to-cache transfers.  For 
these transfers, 64-bit sequence numbers are stored in RAM reducing the available 
memory by 25 percent.   
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Figure 4:  SMP Architecture With Memory Encryption Support 

 
In SENSS [2005], Zhang et al. utilize OTP’s for memory-to-cache transfers and AES 
cipher block-chaining mode for cache-to-cache transfers.  This alternative to direct 
encryption divides the clear text into blocks and encrypts the first block with an 
initialization vector; subsequent blocks are chained together such that the output of the 
previous block is XOR’d with the input of the next before being encrypted. Cipher block 
chaining implies sequential access since each block depends upon each previous block.  
RAM is typically accessed in a fairly random pattern, so this mode of operation is 
impractical except on a very small scale (per cache block for example). Cipher block 
chaining is acceptable for cache-to-cache transfers as only one previous encrypted block 
must be stored at each processor (i.e. there is no requirement for access to previously 
encrypted blocks).  The authors propose a secure hardware unit (SHU), located at each 
processor, comprising an encryption unit with associated storage for keeping track of 
communication. This storage includes memory for a group processor matrix and group 
information table. The group processor matrix is used by each SHU to determine if 
broadcast messages should be read. The matrix is only 640 bytes in size, assuming a 
maximum of 32 processors. The information table contains the secret information for 
communicating between groups, such as the symmetric key and pads, and is estimated at 
149 KB.  An additional 11 bus lines are used for control signals and to pass group id 
numbers.  In [Jannepally et al. 2009], the SENSS scheme is improved using Galois 
Counter-Mode (GCM) AES, which provides both encryption and authentication 
simultaneously.   
 
In I2SEMS [2007], Lee et al. create a scheme that is claimed to be applicable to both 
SMP and DSM systems. They propose a global counter cache (GCC) that assigns 
different sections of the overall counter space to processors (akin to assigning blocks of 
IP addresses to groups of computers).  The blocks of counters are also broadcast to all 
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processors so that they can begin pre-computation of pads.  Each processor has a 
keystream (pad) queue, keystream cache and keystream pool.  The queue and cache both 
contain pads for encryption.  The queue has new pads while the cache contains pads that 
have been used previously.  The authors claim that pads may be reused as long as the 
plaintext has not been modified and that their scheme scales well to large numbers of 
processors since over 25% of pads are reused.  The keystream pool holds pads for 
incoming data; the pads are chosen based on prediction with the aid of the broadcast 
scheme.  
 
The first paper to exclusively address DSM systems [2006] was by Rogers et al., who 
again make use of counter mode encryption.  Since the memory-to-cache scheme is 
similar to those already discussed, we only focus on the cache-to-cache scheme.  The 
authors propose three methods for managing the pad counters:  private, shared, and 
cached counter stream.  In the first private method, tables are kept within each processor 
with separate counters for send and receive operations to/from every other processor in 
the system.  While this technique allows for nearly perfect pad hit rates, and therefore 
very low overhead, it suffers from large storage needs (180KB in each processor for a 
1024-processor DSM).  The second shared scheme, aims to reduce the storage 
requirement by eliminating half of the table: Instead of keeping track of send counters for 
each processor, only one counter is kept for sending pads.  This results in increased 
execution overhead since messages are less likely to arrive contiguously and therefore 
must be recomputed.  The final cached scheme takes advantage of the intuition that 
processors in DSM systems often communicate in cliques [Lee et al. 2007].  The overall 
table size is thus reduced to a quarter of the private scheme’s memory with minimal 
impact on execution overhead.  In a subsequent paper [2008], Rogers et al. identify the 
previous scheme as a two level approach since remote memory requests will first be 
decrypted by the owning processor and then re-encrypted for cache-to-cache transmission 
to another processor.  In the new scheme, a single mechanism is used for both memory-
to-cache and cache-to-cache transfers bypassing the unnecessary decryption and re-
encryption.  The associated hardware includes a 32-entry buffer (1 KB) for counter 
prediction and a 32-entry mask buffer that stores a bit vector of recent data block 
accesses (512 bytes).   
 
Bus Inserts 
 
Another area of active research involves placing specialized encryption hardware outside 
of the CPU.  The locations include the memory bus (i.e. externally between system 
memory and the CPU) and within RAM. The primary goal of this approach is to increase 
the likelihood that this solution will be adopted since re-engineering of commodity 
processors is not required. One such approach, SecBus [Su et al. 2009] shown in Figure 
5, can be located at the frontend of the memory controller. The authors state that this 
method of modification is required in many user markets when embedding new 
functionality into systems with legacy CPUs. SecBus is essentially a cryptographic 
coprocessor with internal storage and bus manager.  The page security parameters entry 
(PSPE) includes information to map pages to corresponding security policy (SP), which 
includes a confidentiality mode, integrity mode and secret key.  SecBus includes the 
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ability to choose between multiple encryption modes based on the type of memory (i.e. 
code or data).   

 
Figure 5: SecBus Hardware Augmentation Model 

In [2008], Enck et al. design a memory encryption control unit (MECU) to again be 
placed on the memory bus between the processor and RAM.  The goal of MECU is to 
provide the same guarantees of security provided by the volatility of traditional RAM 
when utilizing non-volatile main memory.  MECU uses a OTP scheme with internal 
storage for the array of counter seeds and the encryption engine. A secret key and master 
counter, which tracks the greatest overall counter, are stored on a removable smart card.  
In order to reduce the storage requirement, the encryption chunk granularity is increased 
from one cache line to n, where n is 256 in the common case but can grow to the entire 
memory for experimentation.   
 
With the same goal as [Enck et al. 2008], Chhabra et al. [2011] propose placing the 
cryptographic engine and other required hardware in non-volatile RAM modules.  Their 
scheme keeps most of the RAM encrypted with a smaller group of frequently accessed 
pages in plaintext in a similar fashion to [Hong et al. 2011].  The authors claim that by 
doing this, the remainder of the RAM can be encrypted at power-down within 5 seconds, 
paralleling traditional RAM volatility. 
 
Operating System Enhancements 
 
Similar to the bus insert method for enabling memory encryption, software-only 
approaches seek to provide solutions that can be implemented without major changes to 
applications or commodity hardware to increase the likelihood of adoption.   
 
In [2008], Chen et al. propose an operating system controlled memory bus encryption 
technique for systems that offer scratch pad memory (SPM) or cache locking that is 
software controllable.  Both types of memory are available in some embedded processors 
including the Intel XScale series.  A new symmetric key is generated each time the 
system is booted and random vectors (32 bits generated using /dev/urandom and padded 
with 0’s) are used to initialize AES encryption at the granularity of a page.  The vectors 
are then placed in memory with the pages. This scheme requires a 0.4% space overhead 
when used with 1 KB pages.  When a page fault occurs for a secure process, a specially 
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crafted handler moves the encrypted page into the chip boundary and decrypts it there 
placing it into the cache, which is then locked to prevent leakage of sensitive data.  The 
locked region holds several pages of data and encryption variables.  In order to facilitate 
this special handling, a boolean status variable is added to each process descriptor 
residing in kernel address space.  The authors note the scheme is appropriate when 
embedded systems designers can tolerate a significant performance overhead for 
protected processes.   
 
In Cryptkeeper [2010], Peterson modifies the virtual memory manager and partitions 
RAM into two parts; the plaintext Clear and the encrypted Crypt.  Essentially, this 
technique aims to reduce the amount of sensitive data available at any time in memory.  
All pages initially start in the clear and the number of Free Clear Pages (FCP) is reduced 
with each allocation.  The least recently used pages are encrypted and moved to the Crypt 
when the limit of FCP runs low. This operates under the assumption that the number of 
high use pages will be small, and therefore most infrequently used pages will be 
encrypted. This has the unfortunate side effect of maintaining all the important pages in 
the clear. A prototype Cryptkeeper system was designed based on the Linux 2.6.24 
kernel.  The kernel page structure was extended to include information indicating 
whether a page is in the Clear or Crypt portions of memory.   
 
Specialized Industrial Devices  
 
Industry offers several solutions for memory encryption including low frequency 
specialized processors for ATM use, expensive tamper resistant coprocessors for 
financial transactions, proprietary gaming systems and, more recently, enabling 
technologies in commodity processors to enhance trust. 
 
The Dallas Semiconductor 5002FP secure processor is an 8051 compliant processor and 
runs at a maximum frequency of 16 MHz [Dallas 1997].  The processor encrypts memory 
addresses to prevent traffic analysis on the memory bus in addition to data.  The device 
uses spare processor cycles to place dummy memory accesses on the bus since analysis 
of memory access patterns can reveal useful information (e.g. encryption keys or 
sensitive algorithms) to attackers [Gao et al. 2006].  All external memory is encrypted via 
a proprietary encryption algorithm with a 64-bit secret key that is stored in a tamper-
protected, battery-maintained static RAM.  Plaintext code is uploaded via serial port and 
a firmware monitor encrypts it and stores it in external RAM.  The 5002FP is commonly 
used in credit card (i.e. point of sale) terminals, automated teller machines, and pay-TV 
decoders [Yang et al. 2005].  A newer version (DS5250) includes a larger 1 KB 
instruction cache, which, according to Dallas Semiconductor, reduces the effect of 
memory encryption on execution speed providing a 2.5X performance improvement.  
The newer processor runs at a maximum frequency of 25 MHz. 
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Another active area of secure hardware used in industry is the cryptographic coprocessor.  
Primary examples include the IBM PCI-4758, PCI-XCC shown in Figure 6, and the latest 

 
Figure 6: IBM PCIXCC Hardware Model 

 
PCI-e.  These coprocessors include an impressive array of technology but are generally 
limited to IBM server platforms under customized contracts and tend to be used for 
financial and banking systems.  The PCI-XCC is an adapter card including an IBM 
PowerPC 405GPr microprocessor (266 MHz), 64 MB of DRAM, 16 MB of flash 
EEPROM, 128 KB of CMOS RAM backed up by battery, tamper-detection circuitry, 
cryptographic processor and FPGA. It is certified at the FIPS 140-2 tamper resistance 
standard level 4 [Arnold and Doorn 2004].  The packaging around the unit is designed to 
detect or prevent all known physical attacks such as acid etching or probing.  A modified 
version of embedded Linux runs on the system providing a subset of typical features.  
The previous version (4758) used the IBM developed CP/Q message-passing 
microkernel.  The secure module is encased in a flexible mesh of overlapping conductive 
lines meant to prevent any physical intrusion.  If such intrusion is detected the system 
responds by zeroizing the internal RAM which holds the 168 bit Triple-DES secret key.  
The cryptographic processor performs at a throughput of 67 MB/s for Triple DES and 
185 MB/s for AES-128.  The stated purpose of the IBM secure coprocessor is to offload 
computationally intensive cryptographic processes (e.g. specialized financial 
transactions) from the host server. 
 
While mostly constrained for use in playing games and other entertainment media (unless 
compromised) gaming systems are some of the most capable (e.g. fast processor speed 
and relatively large storage) to incorporate memory encryption techniques.  As an 
example of these systems, the Xbox 360 provides encrypted/signed bootup and 
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executables, partially encrypted RAM, and an encrypted hypervisor [Steil and Domke 
2008].  These mechanisms are provided via a Microsoft proprietary processor with 64 KB 
of internal RAM, random number generation and encryption as opposed to the “off the 
shelf” processor used in the original Xbox.  While it is possible to use the Xbox as a 
general-purpose platform, this requires compromising the system’s security measures 
first.  Alternatively, the Sony Playstation 3 includes many of the same security 
mechanisms of the Xbox 360, but allows the end user to partition the hard drive for use 
with a chosen (e.g. Linux) operating system.  However, the proprietary security 
mechanisms of the Playstation 3 are not available to the additional operating system 
[Conrad et al. 2010]. 
 
Most of the approaches in the ME literature assume that several components are 
necessary for secure, efficient performance: a way to generate and securely store 
encryption keys (i.e. not in RAM); and hardware to accelerate encryption performance.  
Although not targeted specifically at memory encryption, nascent technology could be 
used to form the basis of an encrypted memory solution for general-purpose systems. One 
of the developers of IBM’s 4758 cryptographic coprocessor has suggested, for example, 
that a general-purpose system with hardware support (such as a trusted platform module) 
could theoretically be turned into a somewhat less secure but more pervasive and less 
expensive version of the 4758 [Smith 2004].  Encryption engines have been added to 
Intel’s core i5 and i7, AMD’s bulldozer and various embedded processors [Muller et al. 
2011].  Intel’s advanced encryption standard - new instructions (AES-NI) include six 
instructions to speed up key expansion and encryption.  Intel states that the new 
instructions can provide a two to three time performance improvement over software-
only approaches for non-parallel modes of operation such as cipher-block-chaining 
(CBC) encryption [Gueron 2010].  Further, a 10-fold improvement can be realized for 
parallelizable modes including CBC-decrypt and counter-mode encryption (CTR).  As an 
example of the performance improvements possible, the authors ran TrueCrypt’s 
encryption algorithm benchmark test on a MacBook Pro with an Intel i7 dual-core, 266 
GHz CPU.  Using a 5 MB buffer in RAM, the throughput averages 202 MB/s without 
AES-NI support, and 1 GB/s with it – approaching the speed required to overcome 
encryption overheads on general-purpose systems.  
 
The trusted computing group (TCG) designed the Trusted Platform Module (TPM) based 
on the IBM 4758 secure coprocessor [Vandana 2008]. The TPM provides secure key 
storage and the capability for platform measurements for chain-of-trust booting. The 
current specification for the TPM calls for it to be attached to a typical motherboard via 
the low pin count (LPC) bus.  The TPM provides non-volatile storage for encryption keys 
and an encryption engine including support for RSA, SHA-1 hashing, and random 
number generation.  The LPC bus is limited in speed and the cryptographic engine on the 
TPM is not meant to be a cryptographic accelerator.  Over 350 million TPMs were 
deployed as of 2010 and can be found in many laptops and general-purpose computers 
(disabled by default) [Dunn et al. 2011].  On its own, the TPM would not be powerful 
enough to provide general memory encryption with acceptable overhead.  However, the 
TPM may be used to provide secure key storage between power cycles.  Unfortunately, a 
small weakness still exists in that keys must be sent in the clear over the LPC bus to the 
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CPU, allowing a bus snooping attack to capture them [Simmons 2011].  Other interesting 
methods to store encryption keys have been described recently in schemes targeted at 
preventing cold-boot attacks on full disk encryption.  For example, Muller et al. describe 
TRESOR, a technique for utilizing CPU debug registers for encryption key storage 
[2011].  In order to protect against memory attacks on the key, the decryption routines are 
carefully written in assembly to avoid using the stack, heap or data segment during 
decryption.  By utilizing AES-NI, TRESOR was shown to perform better than software 
based full disk encryption (17.04 MB/s vs. 14.67 MB/s) with the additional protection.  A 
similar approach is taken in [Simmons 2011] except that registers used for performance 
counting are targeted for master key storage with multiple encrypted keys being stored in 
RAM.   
 
Intel has recently filed several patents for processors incorporating memory encryption, 
perhaps indicating a move toward support in commodity processors [Gueron 2012], 
[Gueron 2013]. The patents describe a new processor with hardware including a memory 
encryption engine (MEE) and on-chip storage for counters.  The hardware described in 
the application modifies the AES-XTS tweak mode of operation. XTS stands for XEX 
based tweaked codebook mode with ciphertext stealing and this mode is typically used 
for disk encryption [Martin 2010].  A tweak is similar to an initialization vector and is an 
additional input to a cipher designed to protect against similarities in ciphertext.  For disk 
encryption, the tweak tends to be the sector number.  In Intel’s patents, the tweak is 
extended to include a time stamp or counter value along with the memory address. The 
counter is updated each time a cache line is written, providing protection against a replay 
attack where a chunk of memory is copied and inserted back into memory at a later time.     
 
Analysis 
 
Although the primary goal of memory encryption architectures is security, the work tends 
to focus on the overheads involved, both in chip area and performance degradation.  This 
is unfortunate though unsurprising given that most of the work is simulated and it is 
within the intricacies of implementation that security vulnerabilities tend to be found.  
The analysis here focuses on the data available including encryption latencies, 
performance degradation, simulation environments, operating system assumptions, 
overall space requirements, user requirements and general observations regarding 
security. 
 
Since the performance degradation of memory encryption results in less likelihood of its 
use, it is an extremely important factor in the comparison of different schemes.  One of 
the major issues with the body of literature is the lack of a common set of measurement 
standards, with explicit assumptions regarding memory access latency, encryption 
latency etc. This makes it difficult to directly compare approaches and draw valid 
conclusions.  Encryption latencies are typically given as the number of cycles required to 
encrypt/decrypt a cache line that varies from 16 to 128 bytes, typically using a value of 
64 bytes. The latencies range from 11 to 160 cycles with 80 being the most common 
value (especially in the multiprocessor work). The authors in [Rogers et al. 2006] state 
that 80-cycle latency is assumed in order not to penalize the direct encryption scheme 
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(upon which they are trying to improve) since a recent (circa 2006) hardware 
implementation required over 300 ns.  Cycles and nanoseconds are often used 
interchangeably since many of the systems modeled are based on 1 GHz processors.  
Low encryption latencies are possible but at the cost of large die area making them 
appropriate for powerful processors.  For example, it is claimed in [Suh et al. 2003] that 
40 cycle-latency is achievable with four AES units chained together requiring 300,000 
gates.  In AEGIS [Suh et al. 2007], a single AES unit is estimated at 86,655 gates, which 
the authors claim is modest when compared to the size of commercial cores.  
Unfortunately, the OR1200 soft core used to demonstrate Aegis is only approximately 
60,000 gates (meaning one AES unit is 144% of the original core size). 
 
The methods used for determining performance include mathematical models, 
simulation, kernel prototypes and FPGA prototypes with various benchmarking suites 
used in the latter three.  Simulation is performed with (in order of decreasing usage) 
SimpleScalar, Simics, SESC, GEMS, SOC designer, RSIM, and M5.  Benchmark suites 
used include SPEC2000, SPLASH2, Mediabench, EEMBC and several user developed 
varieties such as one entitled “memeater”.  A group of the simulations utilize 
SimpleScalar and [Duc and Keyell 2006] notes that this simulator neglects the impact of 
the operating system and other running processes.  Besides these limitations, some 
authors admit a lack of model fidelity with significant differences between systems 
modeled and those targeted.  For example, in [Chen et al. 2008] an x86 architecture is 
modeled since it happens to be better supported by the simulation tool (Simics) even 
though the scheme is actually targeted for embedded-ARM systems. Unfortunately, even 
if a system under test were to be modeled perfectly, the simulation tools themselves have 
been shown to sometimes exhibit behavior unlike real systems.  In [Muller et al. 2011], 
the behavior of CPU registers is interrogated under simulation in QEMU with the 
contents surviving soft-boot.  This behavior would circumvent the protections afforded in 
that work, however, real hardware behaves differently and zeroes out the registers. 
 
A summary of the featured techniques is presented in Table I to provide an overview of 
memory encryption.  The table includes basic characteristics of each approach such as 
complexity information including execution and storage overheads.  In order to fairly 
compare the different schemes, several assumptions were made.  For example, the size of 
internal storage required is sometimes dependent on the size of RAM, and where possible 
an assumption of 1 GB is made.  Similarly, an assumption of 32 processors is made 
where possible for the multiprocessor approaches.  When there is no data available, an 
element of the table is left blank.  Two values are commonly reported in the literature 
with regard to execution overhead: worst case (max) and the average (based on some 
suite of benchmark tests) percentage slowdown when compared to non-protected 
execution.  Storage overheads typically break down into internal (cache) and external 
(RAM) usage (and one example of the increase to overall code size).  Operating system 
approach indicates whether the authors assumed the existence of a secure kernel (A), 
described hardware to protect the processes from an insecure kernel (H), or ignored the 
operating system (I) (further discussion of this requirement below).  Finally, slightly 
fewer than two-thirds of the authors included memory integrity (I) along with memory 
confidentiality (C) mechanisms.  Where possible, results (e.g. execution overhead and
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storage) are provided for memory encryption only.  Maturity indicates how the technique 
was evaluated if not a commercial product.  Methods appear in the table as they are 
presented in the survey and detailed in the approach column: monolithic processor, 
multiprocessor, bus insert, or software/direct or counter mode encryption.   
 
We will consider partial/full memory encryption and security level in more detail.  While 
partial memory encryption schemes are typically used to decrease both space and 
execution overheads, they place the onus for identifying secure components, a non-trivial 
task, on application or system designers. Today, an analog can be observed in the 
adoption of hard disk encryption technologies, whereby administrators struggling to 
identify which files (or parts of files) require encryption are opting instead for full disk 
encryption [Brink 2009].  Security level refers to the overall security of the ME approach 
with multiple factors from the table taken into consideration: operating system approach, 
addition of integrity mechanisms, encryption algorithm, and partial vs. full ME. 
Additional factors include consideration of implementation details outside of the “steady 
state” such as key escrow, delivery of secure code, inter-process communication, etc. 
Each approach is qualitatively classified into one of three levels—low, medium, and high 
based on these factors.   The Aegis approach [Suh et al. 2003] has the highest security 
level of the works surveyed: the operating system approach includes both hardware and a 
small, trusted kernel; integrity mechanisms are included; the AES encryption algorithm is 
used; full memory encryption is provided; and much of the additional details required for 
a fully functional, secure implementation are discussed.  It is unsurprising that the 
approach with the highest security evaluation is also the most mature (implemented as an 
FPGA prototype).  In contrast, operating system controlled ME [Chen et al. 2008] is 
classified among the lowest security levels: this approach assumes the kernel is secure; 
does not provide integrity mechanisms; targets partial memory-encryption; lacks 
sufficient detail for a fully functional system; and assumes the attacker is a clever 
outsider.  
 
For direct encryption, the performance overhead ranges from a claimed low of 1% in 
[Rogers et al. 2005] based on simulation of pre-decryption to a high of 50% for XOM 
[Lie et al. 2000] using mathematical analysis based on a worst-case scenario. Rogers et 
al. find an average slowdown for a model of XOM of 21% based on the same 18 
SPEC2000 benchmarks used in their own simulation work. In four particular benchmarks 
(applu, bt, ft, and mcf) the overall execution time for pre-decryption is similar to the 
direct encryption scheme because prefetching adds mis-predicted memory references to 
bus traffic increasing contention.  Overhead for OTP based encryption, in monolithic 
chips, ranges from a claimed 1.6% for AISE (SESC and 21 CPU2000 benchmarks) 
[Rogers et al. 2007] to up to 50% for the basic model in CryptoPage (SimpleScalar and 
10 CPU2000 benchmarks) [Duc and Keryell 2006].  The authors of CryptoPage claim 
only 1% of this overhead is attributable to the memory encryption.   
 
For multiprocessor systems, the reported overheads range from a low of 4% in I2SEMS 
(Simics + GEMS and 4 SPLASH2 benchmarks) [Lee et al. 2007] to a high of 55% in [Shi 
et al. 2004] (RSIM and 6 SPLASH2 benchmarks).  I2SEMS is claimed to work equally 
well on both SMP and DSM systems but the simulation environment is limited to SMP.  
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Cache-to-cache overheads are very low (especially for SMP systems that use the shared 
bus for synchronization) in these multiprocessor schemes.  All of the multiprocessor 
schemes build upon work in the monolithic memory encryption area and use the counter 
mode (OTP) model.   
 
There are only two models surveyed for hardware insert and they exhibit very different 
performance characteristics.  MECU [Enck et al. 2008] is based on the OTP scheme and 
exhibits 2.1% and 4.1% overhead based on block sizes of 256 and 4096 cache lines 
respectively and SimpleScalar simulation with 5 SPEC2000 benchmarks.  SecBus [Su et 
al. 2009] is based on direct encryption and exhibits worst case slowdowns of  472% 
based on various EEMBC benchmarks and SoC designer.  Besides the method of 
encryption, the architectures modeled add to the significant differences in overhead.  
While SecBus is simulated on an embedded system with 16KB L1 cache and no L2 
cache, MECU is modeled after an x86 system with 32KB L1 and 256KB unified L2.  
Clearly, the amount of cache available has a huge impact on performance.  If complete 
working sets fit into a system’s cache, the penalty for memory encryption includes only 
the initial decryption time, which is amortized across the entire duration of the process.   
 
As might be expected, the software-only approaches suffer from impractical overheads.  
In [2008], Chen et al. simulate operating system controlled memory encryption and report 
from 137% to 850% overhead based on Simics and Mediabench benchmarks.  In 
Cryptkeeper [Peterson 2010], the overhead to read a page when compared to an 
unprotected system is 6015%.  As far as commercial hardware, there is no literature 
available reporting the performance degradation of either the Dallas Semiconductor chips 
or the IBM cryptographic coprocessors (e.g. PCIXCC).  However, these solutions run at 
slow overall frequencies (25 MHz and 266 MHz respectively) and are not particularly 
well suited for general-purpose systems.  The IBM PCIXCC coprocessor has a reported 
AES-128 throughput of 185 MB/s.   
 
In general, the counter mode methods exhibit less computational overhead than the direct 
encryption techniques and are resistant to direct encryption’s statistical weaknesses. 
However, the choice of size for the counter is critical since a “wraparound”, whereby the 
counter resets to zero, requires a change of key in order that each pad is only used once (a 
condition necessary to ensure protection from chosen plaintext attacks) [Lipman et al. 
2000].  In the case where only one key is used the entire memory then requires re-
encryption.  This re-encryption can be costly depending on the size of memory and 
results in a temporary freezing of the system, which is unacceptable for real-time 
performance [Yan et al. 2006].  Choosing a value too small will result in too many re-
encryptions but choosing one too large will require unacceptable amounts of storage 
space either in cache or memory.  For example, in [Suh et al. 2003] the authors suggest 
32 bits is an appropriate size for the counter.  However, even at this size, and based on 
their simulations, a re-encryption is required every 5.35 hours on average and every 35 
minutes for a particularly memory intensive program.  In [Yang et al. 2005], the authors 
choose to disregard the problem since the provided security is assumed to be no weaker 
than that of the XOM scheme, whereas the wraparound issue is not considered at all in 
[Suh et al. 2007].  In [2006], Yan et al. attempt to address the counter size vs. re-
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encryption problem with their split-counter encryption scheme.  With larger page 
counters and multiple smaller per-memory block counters, overruns result in a much finer 
granularity of re-encryption (per page instead of per process).  Since some pages are 
written back to memory more often than others, the overall necessity for re-encryption is 
reduced since the fastest incrementing counter would have controlled the entire memory 
space in previous schemes.  Another critical decision involves where to store the 
counters.   
 
Although using cache is obviously faster, it is also problematic as cache resources are 
typically limited and expensive.  If pre-existing cache space is utilized instead, additional 
memory references occur since part of processes’ working sets are forced out of cache 
(essentially reducing the size of the usable cache causing capacity misses).  For example, 
in [Yang et al. 2005] the authors state that a 1 GB memory space would require over 8 
million sequence numbers based on cache line granularity and a cache line size of 128 
bytes.  Adding a cache that large (~ 28 MB) is unreasonable so the authors suggest 
adding a much smaller 64 KB one.  However, this design decision either limits the 
security of the system, since a large part of memory would be unencrypted, or some 
sequence numbers would be stored in memory.  There are 32K numbers (2 Bytes each) 
stored in the SNC covering 32K L2 cache lines and 4 MB of memory.  Although RAM is 
slower than cache, the seed (which is smaller than a cache line) is the first memory access 
and would arrive earlier than the rest of the reference.  Although this does not hide as 
much latency as using cache, it is an improvement over the direct encryption scheme.  
This technique would also render part of RAM unusable, as it would be utilized for 
additional storage. 
 
In address independent seed encryption (AISE) [Rogers et al. 2007], the authors suggest 
that all of the previous OTP schemes are flawed in their use of memory address as part of 
pad computation.  Using virtual addresses as a component of the input to the pad seeds 
may lead to a vulnerability since separate processes will use the same address tweak as 
part of the seed (breaking the requirement for pad uniqueness). Additionally, using the 
virtual address for pad computation can cause problems for shared memory inter-process 
communication since the pads would be different for the various processes even though 
both need to access the plaintext.  For schemes using the physical address as part of the 
pad computation there are other issues when swapping to the backing store.  Since pages 
in memory that are swapped out are likely to reside at a new physical address when 
brought back in, there is a potential for pad reuse or the requirement for a decryption and 
re-encryption of a page loaded into a different address.  
 
Industrial implementations have been shown to be vulnerable to attack.  In [1998], Kuhn 
demonstrates what is essentially a brute-force attack on the 5002FP.  External hardware is 
used to control input to the processor and force it to power cycle.  After each power-on, 
different encrypted “guesses” (possible instructions) are fed to the system and the output 
ports are observed.  The 5002FP had been described as the most secure processor 
available for commercial users at the time of this successful attack, which required a 
personal computer, and a device built in a student laboratory for about $300.  One of the 
reasons the 5002FP is vulnerable to brute force attack is the small size of the plaintext.  
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Kuhn notes that encryption performed over whole cache lines (of at least 8 bytes) instead 
of on single bytes would make the brute-force attack impractical.  There is no known 
example of a successful attack against the IBM cryptographic coprocessors.  However, 
these coprocessors are relatively expensive, used for highly specialized applications and 
difficult to upgrade [Suh et al. 2007], making them undesirable for general purpose 
computing environments.  While the TPM chip has been included in various trusted 
computing schemes, it is potentially vulnerable to the same types of snooping and bus 
injection attacks used against systems with unencrypted memory [Shi et al. 2004; Suh et 
al. 2007; Simmons 2011].  In fact, when utilizing the TPM with bitlocker drive 
encryption, the secret key is copied into RAM making it vulnerable to capture via cold-
boot and other attacks as demonstrated in [Halderman et al. 2008].  Since the key must be 
in RAM for bitlocker to function properly, the additional protection of the TPM is 
potentially nullified. 
 
There are three basic approaches in the literature surveyed with regard to operating 
systems.  The problem lies in the fact that without a secure (trusted) operating system 
extra protections must be placed in hardware to prevent a compromised system from 
breaking the confidentiality of other processes.  For example, when processes are context 
switched by the operating system the registers and other internal memory will be in 
plaintext.  The first approach is to explicitly assume the existence of a secure operating 
system [Chen et al. 2008; Shi et al. 2004; Yan et al. 2006; Suh et al. 2003; Su et al. 2009; 
Chen and Morris 2003].  Some of the papers taking this first approach discuss 
implementation requirements but none have been developed.  In the second approach, the 
complexity of the hardware is increased in order to protect all processes (including the 
operating system) from each other [Kgil et al. 2005; Yang et al. 2005; Duc and Keryell 
2006; Enck et al. 2008; Lie et al. 2000; Platte et al. 2006; Zhang et al. 2005; Chhabra et 
al. 2011].  One example of such hardware includes special instructions and extra registers 
which are called before context switches [Lie et al. 2000].  The internal registers are then 
encrypted strictly by the hardware before the kernel can intervene and complete the 
context switch as normal.  Although several papers note the importance of working on a 
secure kernel to complement secure architectures we have found no work to date 
suggesting the completion of any such effort.  In the third approach, the requirement for a 
secure operating system is simply not addressed  [Nagarajan 2007; Rogers et al. 2005; 
Rogers et al. 2007; Hong et al. 2011; Lee et al. 2007; Jannepally et al. 2009; Rogers et al. 
2006; Rogers et al. 2008]. 
 
Conclusion 
 
This survey has considered the research challenges associated with full memory 
encryption and distinguished three primary groups of techniques that attempt to solve 
those challenges — hardware enhancements, operating system enhancements, and 
specialized industrial devices. While the concept of memory encryption has existed for 
over three decades, there are still no general-purpose, commercial-off-the-shelf (COTS) 
solutions integrated with secure operating systems. However, there is clearly a growing 
need for privacy and intellectual property protection on the Internet as evidenced by the 
increasing use of full disk encryption, recent policy directives such as the Federal Data 
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Breach Notification Act and components of the Health Insurance Portability and 
Accountability Act [Brink 2009].  Between 2002 and 2007, a reported 773 breaches of 
US organizations were reported with a total of 267 million private records lost.  Over 
42% of these breaches were a result of lost or stolen hardware including laptops, PDAs 
and portable memory devices [Romanosky et al. 2008].  Additionally, it is apparent that 
at least one major chip maker (Intel) has recognized this growing need as two recent 
patent applications for adding memory encrypting hardware to processors attests [ 
Gueron et al. 2012], [Gueron et al. 2013].  
 
The range of overheads reported in the literature is quite large (1% to 6015%).  The 
results on the lower end of the spectrum are possibly overly optimistic given the lack of 
fidelity in the simulation frameworks and the lack of standards for comparison.  If 
standardization could be injected into the validation methodologies through common 
AES decryption latency, benchmarks etc. it would enable more meaningful comparative 
analyses.  Even with standardization, the number of assumptions make it difficult to be 
confident that simulation will provide anything more than high-level information: It 
ignores the more difficult and interesting implementation issues and associated security 
impact based on vulnerability and exploit analysis.  Where, in the few cases available, the 
literature addresses these low-level issues, it tends to be with generalization since there is 
no chance for practical experimentation or empirical evidence [Lie et al. 2000; Shi et al. 
2004; Chhabra et al. 2010]. While the security of the encryption algorithm or cipher 
mode is often pointed out, it is commonly the complexity of the system in which these 
algorithms run that presents vulnerabilities.  The most developed, though not 
commercially available, general-purpose technologies are FPGA soft-core emulations 
[Suh et al. 2007] and the Linux prototype used in Cryptkeeper [Peterson 2010].  While 
the industrial devices are mature and practical, they are not general purpose, catering to 
highly specialized operations.  Additionally, these devices are either low-frequency or 
expensive and difficult to upgrade [Dallas 1997; Arnold and Doorn 2004].   
 
Several technologies have been incorporated into general-purpose systems recently and 
often without the knowledge of those buying them.  These technologies include TPM 
chips for storing keys and encryption engines and instructions.  Given a system with 
these components, it is now possible to experiment with memory encryption providing an 
opportunity to better understand the difficult implementation details and ultimately 
provide data on overhead and security enhancement.  This data should prove invaluable 
for determining the feasibility of memory encryption in general-purpose systems and for 
comparing against (and perhaps validating) the results of previous simulation work.    
 
Notice 
 
The U.S. Government is authorized to reproduce and distribute reprints for Governmental 
purposes notwithstanding any copyright notation thereon. The views and conclusions 
contained herein are those of the authors and should not be interpreted as necessarily 
representing the official policies or endorsements, either expressed or implied, of the 
Defense Advanced Research Projects Agency (DARPA) or the U.S. Government. 
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