
Bear – A Resilient Operating System for Scalable Multi-processors1

Stephen Taylor, Michael Henson, Morgon Kanter,
Stephen Kuhn, Kathleen McGill, and Colin Nichols

tr11-005

Abstract

This paper describes a minimalist operating system design aimed at scalable multi-
processor systems whose primary goal is resilience. The design is expressly targeted
toward critical military applications for the purpose of operating through failures, errors,
and malicious attacks. Lessons learned from several key proof-of-concept components,
implemented as Linux kernel modules, are currently being incorporated into a new from-
scratch system.

Current operating system designs have sought to utilize a base of trust in hardware and
extend trust to software through deliberate layering. Our approach assumes instead that
adversaries will conduct surveillance, will be successful in gaining access, and will
persist undetected. We propose multiple, overlapping, non-deterministic techniques that
continually re-establish trust by dynamically regenerating core components of distributed
computations and their underlying execution environment. The cumulative effect of these
changes in design style is to increase attacker workload by denying surveillance and
persistence over time-scales consistent with tactical military operations. Unlike other
approaches to computer security, no attempt is made to detect intrusions: instead, we
focus on continually validating, preserving, and re-establishing the ability of a military
mission to proceed – living with insecurity.

Introduction

Today’s commercial off the shelf (COTS) hardware is inherently insecure: It has been
shown that malicious circuitry can be incorporated into an IC with relatively few gates
making detection extremely difficult [1]. This circuitry can provide a wide range of
effects rendering it impossible to establish a hardware base of trust and reliably extend
trust into other operating system layers. One method to mitigate this vulnerability is to
utilize trusted foundries for microelectronics fabrication, where every stage of the
manufacturing pipeline is controlled [2]. However, irrespective of the hardware
mechanism involved, there are two basic use cases for a hardware implant: a time-bomb
that performs a triggered effect without command and control (C2) or a mechanism to
enable effects under remote C2. The first option is of limited use and is analogous to any
other general failure or error; it can, and routinely is, combated by skilled practitioners
within the armed services through diversity and/or spare equipment. The second more
interesting case can be mitigated by denying or degrading C2: increasing attacker

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 This material is based on research sponsored by the Defense Advanced Research Projects Agency (DARPA) under agreement
number FA8750-09-1-0213.

workload to the point where there can be no significant impact on the time-scale of
tactical missions.

Intrusions with remote C2 may involve surveillance to determine if vulnerability is
present, use of an appropriate exploit or other access method, and persistence for a time
sufficient enough to carry out some malicious effect. The time spent in surveillance and
persistence may range from seconds to months, depending upon the intended effect.

This paper describes mechanisms that we have developed to deny surveillance and
persistence. The overall system design is shown in Figure 1 with existing proof-of-
concept implementations, based on Linux kernel modules, signified by an asterisk (*).
The design separates core functions into four layers typical of modern micro-kernel
designs such as MINIX [3]. The number of vulnerabilities existing within a system is
directly correlated with the size of the code base, indicating that there is substantial value
in the intellectual process associated with applying Occam’s razor to reduce the attack
surface. Multiple, overlapping regenerative techniques are combined at every layer of the
system, from the user to the hardware. These methods deny surveillance by continually
invalidating surveillance data, hiding in the network, and using camouflage. Persistence
is denied by non-deterministically replacing, refreshing, replicating, and/or relocating
components so as to continually re-establish trust. The methods can be incorporated
individually, as independent “war-mode”, through loadable modules or collectively and
continuously for critical missions.

Figure 1. Software Layers

The hardware layer shows key existing COTS technologies that we seek to project up
into every layer of the operating system design. Multiple-cores are used to carry out a
wide variety of background operations involving decryption, validation, and non-
deterministic copying and moving. All executable code is stored encrypted and hashed; it
is validated before decryption through hashing and page protection (similar to segment
protection in MULTICS), and decrypted piecemeal just-in-time for virtualized execution.

Unfortunately, the desire for field-upgradable hardware has opened a new dimension to
malicious code in firmware and/or flash [4]. In consequence, there are some simple
additions to COTS systems that are particularly valuable for improving resilience. These
include read-only memory from which to draw encrypted gold-standard images that
represent the code of final recourse, removable links on the primary write-lines to core
flash components, and/or an out-of-band network channel with associated micro-
controller to control flash updates and/or provide a forensic interface. The latter facility
can be used to repeatedly re-flash devices when they are not in use or at designated
system refresh times.

The Hypervisor Layer

The hypervisor layer exists to provide operations on micro-kernels. The normal role of
virtualization is to share the underlying hardware between multiple operating system
instances. In contrast, the minimalist hypervisor in Figure 1 exists primarily to regenerate
and hide the micro-kernel. Regeneration involves a complete replacement of the micro-
kernel for the purpose of expunging root-kits, bots and other malware. SafeFox is a
pioneering virtual browsing environment that also uses a clean slate approach to prevent	

persistence	
 in	
 application	
 code	
 [5].

Regeneration may occur whenever users are momentarily inactive, at fixed intervals by
arrangement, or non-deterministically with appropriate warnings. The hypervisor
regenerates a new micro-kernel in the background from a gold-standard copy stored in
the underlying hardware; the active OS is then torn down while instantaneously switching
to this new system. No attempt is made to detect intrusions or malware, and the operation
occurs even if there is no malware present. Although this technique could be applied
rapidly, we perceive that its most useful applications would be immediately prior to a
critical event and successively at convenient intervals, perhaps hours apart.

Each new micro-kernel instance need not be exactly the same: a different version,
selected non-deterministically, invalidates existing surveillance data and offers the
opportunity to project known vulnerabilities with associated detection software. In
addition, the presence of multiple NIC cards in the underlying hardware allows each new
instance to non-deterministically choose an alternative network connection. These may
be physically connected to completely different network segments, potentially behind
different external proxies. From a surveillance perspective, the host appears to be a
completely different machine available for only a short period at different parts of the
network. This invalidates surveillance data with every move, in the style of pioneering
work conducted at BBN. Finally, the hypervisor may also camouflage the micro-kernel,
through alterations to its traffic, to project a completely different micro-kernel from that
which is actually executing. Camouflage may also project known vulnerabilities and be
associated with detection software.

Our proof-of-concept implementation of regeneration and network hiding is implemented
using KVM and has explored the difficult end case associated with web servers which

offer static pages in addition to streaming and stateful content [6]. Since much of the
traffic in modern networks is between clients and servers, rather than client-to-client,
servers represent high-value, statically situated, concentration points for surveillance
data. A variety of alternative Linux distributions, running the Apache web server, were
chosen as gold-standard images. Figure 2 outlines the non-deterministic process executed
by the hypervisor at a single host.

Figure 2: Regeneration and Network Hiding

The process begins when the hardware is restarted. The hypervisor enters the Start state
and a primary virtual machine P is created by selecting a random operating system
variant, chosen from the set of pre-configured images. A random network is chosen by
selecting an associated NIC card from the available pool provided by the hardware; it is
assigned a random IP address inside the chosen network segment. The network services
for the primary virtual machine are then initialized with these properties, and an Apache
web server is bootstrapped on top of the operating system. The state machine
subsequently cycles through four primary states.

In the boot state a secondary virtual machine S is created in the background with a
different operating system, web server, IP-address, and MAC address (NIC card). On
multi-core systems this operation has negligible impact on the performance of the
primary virtual machine. The locate state is used to contact a private DNS server to
inform it of the network address of the primary server. Authenticated clients can use the
DNS server to locate the primary server. In the serve state the primary server responds to
incoming connection requests and serves web content. During this activity a random
timeout is set, and a running count is kept of the number of active connections. The
active server continues to serve as long as the timeout has not expired and there are active
connections. If the timeout expires, the terminate state is used to switch virtual machines:
the primary virtual machine terminates but only when all existing connections to it close.
The secondary virtual machine becomes the primary virtual machine serving all new
connections. The boot state is then re-entered where a new secondary is created.

This basic process limits the extent of a single connection for streaming and stateful
content to the period of the timeout, which may be on the order of hours. If only static
pages are being served they can be automatically handled by the retry mechanism of
TCP/IP allowing the server to move at a higher rate. For clients, the timeout could be
much smaller presenting a constantly moving target.

Current hypervisors do not provide convenient support for dynamically switching
network cards and introspection into connection information. Their role is to provide a
general sharing mechanism for the underlying network hardware in much the same way
as a bridge. The more simple multiplexing operations described here offer the
opportunity not only to inspect traffic but also change its characteristics for the purpose
of deception. We have explored this concept in a proof of concept camouflage module
that presents a false server fingerprint [7]. The camouflage has been demonstrated by
disguising a Microsoft Exchange 2008 server running on Windows Server 2008 RC2 to
appear as a Sendmail 8.6.9 server running on Linux 2.6. It was able to reliably deceive
Nessus OS detection, Nmap OS detection and service detection, and RING OS detection
into incorrectly identifying the Exchange server.

The capability is implemented as a table-driven finite state machine that operates across
the entire protocol stack - simultaneously falsifying both operating system and service
properties within IP, TCP, and SMTP. The state-machine transitions between states by
following normal protocol specifications on incoming traffic, but it responds with false
outgoing traffic. The false fingerprint included a known vulnerability whose exploitation
was detected automatically when used. It is important to recognize that camouflage need
not be a perfect deception: it is sufficient to sow enough confusion that an attacker is
unable to take timely actions.

The Micro-Kernel Layer

The role of the micro-kernel is to provide operations on processes. Unfortunately,
operating system developers have been slow to embrace innovations such as
read/write/execute protections available in MULTICS and trust concepts such as the
Trusted Platform Module (TPM). In addition, there has not been an aggressive movement
to project encryption techniques throughout the fundamental structures of commercial
operating systems. Two processor technology trends are now setting the stage for a
change in direction: protection capabilities integrated into paging mechanisms and the
emergence of encryption as a first class citizen in processor design through both memory
encryption and specialized instructions. When combined with multiple processing cores,
to hide the overhead of housekeeping operations, and a small key store protecting a larger
hash store, these innovations offer a unique opportunity: to change the basic fetch-
execute cycle into one that universally applies a fetch-validate-decrypt-execute cycle.
This transition would apply protection, hashing, and decryption on-the-fly, at different
levels of granularity, to continuously re-establish code trust at run-time.

Our system design seeks to explore these ideas by leveraging the mature body of
knowledge that has evolved in building modular micro-kernels. A particularly interesting
aspect of MINIX 3 is that it places device drivers outside kernel-space and provides a re-
incarnation server to restart them in the event of failure [3]. Our goal is to extend this
concept to non-deterministically restart potentially compromised drivers from established
gold-standards when they are idle, even if they do not fail, for the purpose of re-
establishing trust. Carrying this process further, we seek to expand the regeneration of
processes to include replication and mobility to provide a distributed form of resilience.
This approach gives rise to a view of concurrent applications that is best described by a
biologically inspired analogy:

A concurrent application is composed of a large number of message-passing
processes, each analogous to a new strain of roach. Roaches have survived for
millennia -- you can stamp on them, spray them, strike them with a broom but
you’ll never kill them all or prevent them from their goal of finding food
(computing resources). To foil eradication efforts, they have evolved a few
simple strategies: they are highly mobile (process migration), constantly
pregnant (replicate), and operate in family groups for mutual support
(collaborative). Our new strain also uses camouflage to conceal its location.

A wide diversity of DoD systems have sought to use replication in one form or another as
a mechanism to provide fault-tolerance. These approaches provide graceful degradation
of system performance to the point of failure, but are not sufficient to guarantee progress
in the presence of repetitious malicious effects. We seek technologies that dynamically
regenerate replication in response to inconsistencies and invariants sampled over time.
The net impact of this process is to allow the level of system assurance to be maintained,
ensuring that a military mission may continue unabated.

These concepts have been demonstrated in a recent proof-of-concept implementation
based on Linux kernel modules that is illustrated in Figure 3. At the user level, a
concurrent application is expressed through processes that cooperate through pair-wise
message-passing primitives. The underlying operating system implements a resilient
view that replicates each process and organizes communication between the resulting
process groups. Point-to-point communication among user processes is implemented by
multi-cast communication between process groups. Individual processes within each
group are mapped to different computers to ensure that a single attack or failure cannot
impact an entire group.

Figure 3. Dynamic process regeneration

The base of the Figure 3 shows how the process structure responds to an attack or failure:
An attack perpetrated against processor 3, causes processes 1 and 2 to fail or to portray
inconsistencies in behavior or communication when compared to other replicas within
their respective groups. These inconsistencies are detected either by behavioral alerts,
communication timeouts, and/or message comparison. Inconsistencies trigger an
automatic process regeneration: the consistent copies of processes 1 and 2 are used to
dynamically regenerate a new replica and migrate it to alternate processors 4 and 1
respectively. As a result, the process structure is reconstituted, and the application
continues operation with the same level of assurance.

Our early research in this area culminated in a concurrent programming library, SCPlib,
in which several non-trivial applications were implemented [8]. Unfortunately, the level
of added complexity involved in directly programming resilience compounded the
already complex task of concurrent programming. Lessons learned from this activity
indicated that operating system mechanisms to transparently support resilience would not
be unreasonably complex provided that a simple message-passing interface was
employed. Support for the wide array of communication primitives in the industry
standard Message Passing Interface (MPI) appears impractical.

Our current proof of concept uses a simple MPI-like application programming interface
(API): A concurrent computation comprises a set of n communicating processes,
numbered 0 to n-1. A computation is initiated using a system call of the form: msgrun
<program> <args>. These processes communicate using two blocking communication
primitives:

• msgsend(dest, &buff, size) – send a message from buff of length size bytes to
dest.

• msgrecv(src, &buff, size, &status) – receive a message from src (or ANY) into
buff of length size; status is a structure designating the source of the message and
its length, messages that are larger than size are truncated.

Each process may determine the number of processes in the computation from command
line arguments and may use a system call of the form msgpid(&mypid) to determine its
position in the numeric ordering. This simple interface explicitly excludes the ability to
busy-wait on messages, a consistently problematic issue when running multiple
applications concurrently. It also serves to provide rendezvous style inter-process
communication on a single processor [3].

The API is sufficient to express all three of the prevalent concurrent problem solving
strategies that utilize functional, domain, and irregular decompositions. For the purpose
of experimental evaluations, we have developed a suite of message-passing applications
that exemplify these strategies involving numerical integration, iterative solution of
partial differential equations, and a non-trivial LiDAR processing algorithm respectively.
The additional cost of resilience is insignificant when compared to the inherent cost of
process replication required to achieve fault tolerance [9]. The application exemplars
have been executed with triple redundancy; induced failures are detected through
communication timeouts with recovery as shown in Figure 3. The kernel performs
process mobility by copying the entire process state (including registers, heap, etc) to an
alternative processor using kernel level TCP connections. This operation involves
scanning the page tables, mapping in and copying the pages associated with the process.
A forwarding protocol is used to handle messages that are currently in transit when the
destination process is being migrated. Unlike other approaches to process mobility, this
approach uses no global operations or check-pointing, is completely asynchronous, and
leaves no residual dependencies [10, 11]. This allows it to be used non-deterministically
at any host in the network with no network-wide observables. Currently, simple round-
robin process mapping techniques, that place members of the same process groups in
different processors, have been used in our experiments.

The transparent realization of resilience on large-scale concurrent architectures
necessitates an automatic approach to process scheduling. Our early work in this area
resulted in a general algorithm for load balancing based on the heat diffusion equation
[12]. This approach has several attractive properties: It uses a simple, fast, scalable
algorithm involving only nearest neighbor communication; global progress and
convergence are guaranteed through well-established mathematical analysis. The
algorithm has been shown, through simulation, to simultaneously balance multiple
independent load distributions over large-scale architectures, even with huge random load
injections. Vector based extensions to the algorithm allow multiple resources (including
communication, memory, and CPU load) to be balanced simultaneously [13].

In extending this work to resilience we seek to introduce two basic scheduling
constraints: (1) process replicas are mapped to different processors, and (2) replicas
maintain locality within their groups in order to bound error detection timeouts. To
achieve these constraints, we have developed a diffusive algorithm that incorporates

elements of swarming algorithms prevalent in the robotic literature. This algorithm has
similar global progress and convergence properties to heat diffusion. It implicitly
achieves the constraints required for resiliency through emergent properties associated
with swarm dynamics: the mapping constraint through obstacle avoidance and the
locality constraint through swarm cohesion [14].

Conclusion

Military systems have gained tremendously from the cost and flexibility benefits afforded
by widespread adoption of commercial technology -- to the point where it is now difficult
to image how we might operate, with similar levels of efficiency, using manual methods.
However, in times of tension, critical mission capabilities must continue to operate, even
if major components of “the network” are unavailable and the systems upon which we
rely are repeatedly compromised by error, fault, or malicious actions. It therefore
behooves us to apply Occam’s razor to pare back the layers of complexity that have been
thrust upon us by commercial vendors, in light of the controlled environment in which
DoD operates, to improve resilience.

One approach is to use COTS subsystems, accepting their imperfections, but augment
them with ideas from the fault-tolerance, distributed computing, and encryption
communities. The research described in this paper explores how we might pursue this
goal using three basic rules:

1) Don’t trust what you have -- validate, replicate and regenerate,
2) Don’t advertise what you do – hide and camouflage, and
3) Don’t be predictable – instead be mobile and non-deterministic.

Notice

The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency (DARPA) or the U.S. Government.

Reference

[1] S. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou, “Designing and

implementing malicious hardware,” In Proceedings of the First USENIX Workshop
on Large-Scale Exploits and Emergent Threats (LEET), April 2008.

[2] S. Pope, “Trusted Integrated Circuit Strategy,” IEEE Transactions on Components
and Packaging Technologies, Vol. 31, No 1, pp. 230-234, 2008.

[3] Tanenbaum and Woodhull, “Operating Systems: Design and Implementation,”
Prentice Hall, 2006.

[4] PowerEdge R410 replacement motherboard contains malware,
http://en.community.dell.com/support-forums/servers/f/956/t/19339458.aspx, Jul 10
2010.

[5] W. Jiang, H. Yih, and A. Ghosh, “SafeFox: A safe lightweight virtual browsing
environment,” Proceedings of the 43rd Hawaii International Conference on System
Sciences (HICSS), Jan 2010.

[6] S. Kuhn and S. Taylor, “Increasing Attacker Workload with Virtual Machines”,
submitted to MILCOM 2011. (Available as Thayer Technical Report TR11-002 at
http://thayer.dartmouth.edu/tr/reports).

[7] M. Kanter and S. Taylor, Camouflaging Servers to Avoid Exploits, submitted to
MILCOM 2011. (Available as Thayer Technical Report TR11-001 at
http://thayer.dartmouth.edu/tr/reports)

[8] J. Lee, S. J. Chapin, and S. Taylor, "Reliable Heterogeneous Applications," IEEE
Transactions on Reliability, special issue on Quality/Reliability Engineering of
Information Systems, Vol. 52, No 3, pp. 330-339, 2003.

[9] K. McGill and S. Taylor, “Operating System Support for Resilience,” Submitted to
IEEE Transactions on Reliability, (Available as Thayer Technical Report TR11-003
at http://thayer.dartmouth.edu/tr/reports).

[10] G. Valle, C. Morin, J. Berthou, I. Dutka Malen, and R. Lottiaux. Process migration
based on gobelins distributed shared memory. In Proceedings of the workshop on
Distributed Shared Memory, pages 325-330, May 2002.

[11] C. Wang, F. Mueller, C. Engelmann, and S. Scott. Proactive Process-Level Live
Migration in HPC Environments. In Proceedings of the 2008 ACM/IEE Conference
on Supercomputing, 2008.

[12] A. Heirich and S. Taylor "Load Balancing by Diffusion", Proceedings of 24th
International Conference on Parallel Programming, vol 3 CRC Press pp 192-202,
1995. Outstanding Paper Award.

[13] J. Watts, and S. Taylor, "A Vector-based Strategy for Dynamic Resource
Allocation", Journal of Concurrency: Practice and Experiences, 1998.

[14] K. McGill and S. Taylor, “Robot Algorithms for Localization of Multiple Emission
Sources,” ACM Computing Surveys (CSUR), March 2011.

