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Abstract 
 
This paper describes a minimalist operating system design aimed at scalable multi-
processor systems whose primary goal is resilience. The design is expressly targeted 
toward critical military applications for the purpose of operating through failures, errors, 
and malicious attacks. Lessons learned from several key proof-of-concept components, 
implemented as Linux kernel modules, are currently being incorporated into a new from-
scratch system. 
 
Current operating system designs have sought to utilize a base of trust in hardware and 
extend trust to software through deliberate layering. Our approach assumes instead that 
adversaries will conduct surveillance, will be successful in gaining access, and will 
persist undetected. We propose multiple, overlapping, non-deterministic techniques that 
continually re-establish trust by dynamically regenerating core components of distributed 
computations and their underlying execution environment. The cumulative effect of these 
changes in design style is to increase attacker workload by denying surveillance and 
persistence over time-scales consistent with tactical military operations. Unlike other 
approaches to computer security, no attempt is made to detect intrusions: instead, we 
focus on continually validating, preserving, and re-establishing the ability of a military 
mission to proceed – living with insecurity. 
 
 
Introduction 
 
Today’s commercial off the shelf (COTS) hardware is inherently insecure: It has been 
shown that malicious circuitry can be incorporated into an IC with relatively few gates 
making detection extremely difficult [1].  This circuitry can provide a wide range of 
effects rendering it impossible to establish a hardware base of trust and reliably extend 
trust into other operating system layers. One method to mitigate this vulnerability is to 
utilize trusted foundries for microelectronics fabrication, where every stage of the 
manufacturing pipeline is controlled [2]. However, irrespective of the hardware 
mechanism involved, there are two basic use cases for a hardware implant: a time-bomb 
that performs a triggered effect without command and control (C2) or a mechanism to 
enable effects under remote C2. The first option is of limited use and is analogous to any 
other general failure or error; it can, and routinely is, combated by skilled practitioners 
within the armed services through diversity and/or spare equipment. The second more 
interesting case can be mitigated by denying or degrading C2: increasing attacker 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 This material is based on research sponsored by the Defense Advanced Research Projects Agency (DARPA) under agreement 
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workload to the point where there can be no significant impact on the time-scale of 
tactical missions.  
 
Intrusions with remote C2 may involve surveillance to determine if vulnerability is 
present, use of an appropriate exploit or other access method, and persistence for a time 
sufficient enough to carry out some malicious effect. The time spent in surveillance and 
persistence may range from seconds to months, depending upon the intended effect.  

This paper describes mechanisms that we have developed to deny surveillance and 
persistence. The overall system design is shown in Figure 1 with existing proof-of-
concept implementations, based on Linux kernel modules, signified by an asterisk (*). 
The design separates core functions into four layers typical of modern micro-kernel 
designs such as MINIX [3]. The number of vulnerabilities existing within a system is 
directly correlated with the size of the code base, indicating that there is substantial value 
in the intellectual process associated with applying Occam’s razor to reduce the attack 
surface. Multiple, overlapping regenerative techniques are combined at every layer of the 
system, from the user to the hardware. These methods deny surveillance by continually 
invalidating surveillance data, hiding in the network, and using camouflage. Persistence 
is denied by non-deterministically replacing, refreshing, replicating, and/or relocating 
components so as to continually re-establish trust. The methods can be incorporated 
individually, as independent “war-mode”, through loadable modules or collectively and 
continuously for critical missions. 
 

 

Figure 1. Software Layers 
 
The hardware layer shows key existing COTS technologies that we seek to project up 
into every layer of the operating system design. Multiple-cores are used to carry out a 
wide variety of background operations involving decryption, validation, and non-
deterministic copying and moving. All executable code is stored encrypted and hashed; it 
is validated before decryption through hashing and page protection (similar to segment 
protection in MULTICS), and decrypted piecemeal just-in-time for virtualized execution.  



Unfortunately, the desire for field-upgradable hardware has opened a new dimension to 
malicious code in firmware and/or flash [4]. In consequence, there are some simple 
additions to COTS systems that are particularly valuable for improving resilience. These 
include read-only memory from which to draw encrypted gold-standard images that 
represent the code of final recourse, removable links on the primary write-lines to core 
flash components, and/or an out-of-band network channel with associated micro-
controller to control flash updates and/or provide a forensic interface. The latter facility 
can be used to repeatedly re-flash devices when they are not in use or at designated 
system refresh times. 

 
The Hypervisor Layer 
 
The hypervisor layer exists to provide operations on micro-kernels. The normal role of 
virtualization is to share the underlying hardware between multiple operating system 
instances. In contrast, the minimalist hypervisor in Figure 1 exists primarily to regenerate 
and hide the micro-kernel. Regeneration involves a complete replacement of the micro-
kernel for the purpose of expunging root-kits, bots and other malware. SafeFox is a 
pioneering virtual browsing environment that also uses a clean slate approach to prevent	
  
persistence	
  in	
  application	
  code	
  [5].  
 
Regeneration may occur whenever users are momentarily inactive, at fixed intervals by 
arrangement, or non-deterministically with appropriate warnings. The hypervisor 
regenerates a new micro-kernel in the background from a gold-standard copy stored in 
the underlying hardware; the active OS is then torn down while instantaneously switching 
to this new system. No attempt is made to detect intrusions or malware, and the operation 
occurs even if there is no malware present. Although this technique could be applied 
rapidly, we perceive that its most useful applications would be immediately prior to a 
critical event and successively at convenient intervals, perhaps hours apart.  
 
Each new micro-kernel instance need not be exactly the same: a different version, 
selected non-deterministically, invalidates existing surveillance data and offers the 
opportunity to project known vulnerabilities with associated detection software. In 
addition, the presence of multiple NIC cards in the underlying hardware allows each new 
instance to non-deterministically choose an alternative network connection. These may 
be physically connected to completely different network segments, potentially behind 
different external proxies. From a surveillance perspective, the host appears to be a 
completely different machine available for only a short period at different parts of the 
network. This invalidates surveillance data with every move, in the style of pioneering 
work conducted at BBN. Finally, the hypervisor may also camouflage the micro-kernel, 
through alterations to its traffic, to project a completely different micro-kernel from that 
which is actually executing. Camouflage may also project known vulnerabilities and be 
associated with detection software.  
 
Our proof-of-concept implementation of regeneration and network hiding is implemented 
using KVM and has explored the difficult end case associated with web servers which 



offer static pages in addition to streaming and stateful content [6]. Since much of the 
traffic in modern networks is between clients and servers, rather than client-to-client, 
servers represent high-value, statically situated, concentration points for surveillance 
data. A variety of alternative Linux distributions, running the Apache web server, were 
chosen as gold-standard images. Figure 2 outlines the non-deterministic process executed 
by the hypervisor at a single host.  
 

 

Figure 2: Regeneration and Network Hiding  

The process begins when the hardware is restarted.  The hypervisor enters the Start state 
and a primary virtual machine P is created by selecting a random operating system 
variant, chosen from the set of pre-configured images.  A random network is chosen by 
selecting an associated NIC card from the available pool provided by the hardware; it is 
assigned a random IP address inside the chosen network segment.  The network services 
for the primary virtual machine are then initialized with these properties, and an Apache 
web server is bootstrapped on top of the operating system. The state machine 
subsequently cycles through four primary states. 
 
In the boot state a secondary virtual machine S is created in the background with a 
different operating system, web server, IP-address, and MAC address (NIC card). On 
multi-core systems this operation has negligible impact on the performance of the 
primary virtual machine. The locate state is used to contact a private DNS server to 
inform it of the network address of the primary server. Authenticated clients can use the 
DNS server to locate the primary server.  In the serve state the primary server responds to 
incoming connection requests and serves web content.  During this activity a random 
timeout is set, and a running count is kept of the number of active connections.  The 
active server continues to serve as long as the timeout has not expired and there are active 
connections. If the timeout expires, the terminate state is used to switch virtual machines: 
the primary virtual machine terminates but only when all existing connections to it close. 
The secondary virtual machine becomes the primary virtual machine serving all new 
connections. The boot state is then re-entered where a new secondary is created.   



 
This basic process limits the extent of a single connection for streaming and stateful 
content to the period of the timeout, which may be on the order of hours. If only static 
pages are being served they can be automatically handled by the retry mechanism of 
TCP/IP allowing the server to move at a higher rate. For clients, the timeout could be 
much smaller presenting a constantly moving target.  
 
Current hypervisors do not provide convenient support for dynamically switching 
network cards and introspection into connection information. Their role is to provide a 
general sharing mechanism for the underlying network hardware in much the same way 
as a bridge. The more simple multiplexing operations described here offer the 
opportunity not only to inspect traffic but also change its characteristics for the purpose 
of deception. We have explored this concept in a proof of concept camouflage module 
that presents a false server fingerprint [7]. The camouflage has been demonstrated by 
disguising a Microsoft Exchange 2008 server running on Windows Server 2008 RC2 to 
appear as a Sendmail 8.6.9 server running on Linux 2.6. It was able to reliably deceive 
Nessus OS detection, Nmap OS detection and service detection, and RING OS detection 
into incorrectly identifying the Exchange server.  
 
The capability is implemented as a table-driven finite state machine that operates across 
the entire protocol stack - simultaneously falsifying both operating system and service 
properties within IP, TCP, and SMTP. The state-machine transitions between states by 
following normal protocol specifications on incoming traffic, but it responds with false 
outgoing traffic. The false fingerprint included a known vulnerability whose exploitation 
was detected automatically when used. It is important to recognize that camouflage need 
not be a perfect deception: it is sufficient to sow enough confusion that an attacker is 
unable to take timely actions. 
 
The Micro-Kernel Layer 
 
The role of the micro-kernel is to provide operations on processes. Unfortunately, 
operating system developers have been slow to embrace innovations such as 
read/write/execute protections available in MULTICS and trust concepts such as the 
Trusted Platform Module (TPM). In addition, there has not been an aggressive movement 
to project encryption techniques throughout the fundamental structures of commercial 
operating systems. Two processor technology trends are now setting the stage for a 
change in direction: protection capabilities integrated into paging mechanisms and the 
emergence of encryption as a first class citizen in processor design through both memory 
encryption and specialized instructions. When combined with multiple processing cores, 
to hide the overhead of housekeeping operations, and a small key store protecting a larger 
hash store, these innovations offer a unique opportunity: to change the basic fetch-
execute cycle into one that universally applies a fetch-validate-decrypt-execute cycle. 
This transition would apply protection, hashing, and decryption on-the-fly, at different 
levels of granularity, to continuously re-establish code trust at run-time.  
 



Our system design seeks to explore these ideas by leveraging the mature body of 
knowledge that has evolved in building modular micro-kernels. A particularly interesting 
aspect of MINIX 3 is that it places device drivers outside kernel-space and provides a re-
incarnation server to restart them in the event of failure [3]. Our goal is to extend this 
concept to non-deterministically restart potentially compromised drivers from established 
gold-standards when they are idle, even if they do not fail, for the purpose of re-
establishing trust. Carrying this process further, we seek to expand the regeneration of 
processes to include replication and mobility to provide a distributed form of resilience. 
This approach gives rise to a view of concurrent applications that is best described by a 
biologically inspired analogy: 
 

A concurrent application is composed of a large number of message-passing 
processes, each analogous to a new strain of roach. Roaches have survived for 
millennia -- you can stamp on them, spray them, strike them with a broom but 
you’ll never kill them all or prevent them from their goal of finding food 
(computing resources). To foil eradication efforts, they have evolved a few 
simple strategies: they are highly mobile (process migration), constantly 
pregnant (replicate), and operate in family groups for mutual support 
(collaborative). Our new strain also uses camouflage to conceal its location.  

 
A wide diversity of DoD systems have sought to use replication in one form or another as 
a mechanism to provide fault-tolerance. These approaches provide graceful degradation 
of system performance to the point of failure, but are not sufficient to guarantee progress 
in the presence of repetitious malicious effects.  We seek technologies that dynamically 
regenerate replication in response to inconsistencies and invariants sampled over time. 
The net impact of this process is to allow the level of system assurance to be maintained, 
ensuring that a military mission may continue unabated.  
 
These concepts have been demonstrated in a recent proof-of-concept implementation 
based on Linux kernel modules that is illustrated in Figure 3. At the user level, a 
concurrent application is expressed through processes that cooperate through pair-wise 
message-passing primitives.  The underlying operating system implements a resilient 
view that replicates each process and organizes communication between the resulting 
process groups.   Point-to-point communication among user processes is implemented by 
multi-cast communication between process groups. Individual processes within each 
group are mapped to different computers to ensure that a single attack or failure cannot 
impact an entire group.   



 
Figure 3.  Dynamic process regeneration 

 
The base of the Figure 3 shows how the process structure responds to an attack or failure: 
An attack perpetrated against processor 3, causes processes 1 and 2 to fail or to portray 
inconsistencies in behavior or communication when compared to other replicas within 
their respective groups. These inconsistencies are detected either by behavioral alerts, 
communication timeouts, and/or message comparison.  Inconsistencies trigger an 
automatic process regeneration: the consistent copies of processes 1 and 2 are used to 
dynamically regenerate a new replica and migrate it to alternate processors 4 and 1 
respectively.  As a result, the process structure is reconstituted, and the application 
continues operation with the same level of assurance.   
 
Our early research in this area culminated in a concurrent programming library, SCPlib, 
in which several non-trivial applications were implemented [8].  Unfortunately, the level 
of added complexity involved in directly programming resilience compounded the 
already complex task of concurrent programming. Lessons learned from this activity 
indicated that operating system mechanisms to transparently support resilience would not 
be unreasonably complex provided that a simple message-passing interface was 
employed. Support for the wide array of communication primitives in the industry 
standard Message Passing Interface (MPI) appears impractical.  
 
Our current proof of concept uses a simple MPI-like application programming interface 
(API): A concurrent computation comprises a set of n communicating processes, 
numbered 0 to n-1. A computation is initiated using a system call of the form: msgrun 
<program> <args>. These processes communicate using two blocking communication 
primitives: 
 

• msgsend(dest, &buff, size) – send a message from buff of length size bytes to 
dest. 



• msgrecv(src, &buff, size, &status) – receive a message from src (or ANY) into 
buff of length size; status is a structure designating the source of the message and 
its length, messages that are larger than size are truncated. 

 
Each process may determine the number of processes in the computation from command 
line arguments and may use a system call of the form msgpid(&mypid) to determine its 
position in the numeric ordering. This simple interface explicitly excludes the ability to 
busy-wait on messages, a consistently problematic issue when running multiple 
applications concurrently. It also serves to provide rendezvous style inter-process 
communication on a single processor [3].  
 
The API is sufficient to express all three of the prevalent concurrent problem solving 
strategies that utilize functional, domain, and irregular decompositions. For the purpose 
of experimental evaluations, we have developed a suite of message-passing applications 
that exemplify these strategies involving numerical integration, iterative solution of 
partial differential equations, and a non-trivial LiDAR processing algorithm respectively. 
The additional cost of resilience is insignificant when compared to the inherent cost of 
process replication required to achieve fault tolerance [9]. The application exemplars 
have been executed with triple redundancy; induced failures are detected through 
communication timeouts with recovery as shown in Figure 3.  The kernel performs 
process mobility by copying the entire process state (including registers, heap, etc) to an 
alternative processor using kernel level TCP connections. This operation involves 
scanning the page tables, mapping in and copying the pages associated with the process. 
A forwarding protocol is used to handle messages that are currently in transit when the 
destination process is being migrated. Unlike other approaches to process mobility, this 
approach uses no global operations or check-pointing, is completely asynchronous, and 
leaves no residual dependencies [10, 11]. This allows it to be used non-deterministically 
at any host in the network with no network-wide observables. Currently, simple round-
robin process mapping techniques, that place members of the same process groups in 
different processors, have been used in our experiments. 
 
The transparent realization of resilience on large-scale concurrent architectures 
necessitates an automatic approach to process scheduling.  Our early work in this area 
resulted in a general algorithm for load balancing based on the heat diffusion equation 
[12].  This approach has several attractive properties:  It uses a simple, fast, scalable 
algorithm involving only nearest neighbor communication; global progress and 
convergence are guaranteed through well-established mathematical analysis.  The 
algorithm has been shown, through simulation, to simultaneously balance multiple 
independent load distributions over large-scale architectures, even with huge random load 
injections.  Vector based extensions to the algorithm allow multiple resources (including 
communication, memory, and CPU load) to be balanced simultaneously [13].  
 
In extending this work to resilience we seek to introduce two basic scheduling 
constraints: (1) process replicas are mapped to different processors, and (2) replicas 
maintain locality within their groups in order to bound error detection timeouts. To 
achieve these constraints, we have developed a diffusive algorithm that incorporates 



elements of swarming algorithms prevalent in the robotic literature. This algorithm has 
similar global progress and convergence properties to heat diffusion. It implicitly 
achieves the constraints required for resiliency through emergent properties associated 
with swarm dynamics: the mapping constraint through obstacle avoidance and the 
locality constraint through swarm cohesion [14].   
 
 
Conclusion 
 
Military systems have gained tremendously from the cost and flexibility benefits afforded 
by widespread adoption of commercial technology -- to the point where it is now difficult 
to image how we might operate, with similar levels of efficiency, using manual methods. 
However, in times of tension, critical mission capabilities must continue to operate, even 
if major components of “the network” are unavailable and the systems upon which we 
rely are repeatedly compromised by error, fault, or malicious actions. It therefore 
behooves us to apply Occam’s razor to pare back the layers of complexity that have been 
thrust upon us by commercial vendors, in light of the controlled environment in which 
DoD operates, to improve resilience.  
 
One approach is to use COTS subsystems, accepting their imperfections, but augment 
them with ideas from the fault-tolerance, distributed computing, and encryption 
communities. The research described in this paper explores how we might pursue this 
goal using three basic rules:  
 

1) Don’t trust what you have  -- validate, replicate and regenerate,  
2) Don’t advertise what you do – hide and camouflage, and  
3) Don’t be predictable – instead be mobile and non-deterministic. 

 
 
 
Notice 
 
The U.S. Government is authorized to reproduce and distribute reprints for Governmental 
purposes notwithstanding any copyright notation thereon. The views and conclusions 
contained herein are those of the authors and should not be interpreted as necessarily 
representing the official policies or endorsements, either expressed or implied, of the 
Defense Advanced Research Projects Agency (DARPA) or the U.S. Government. 
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